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An ideal gas with isentropic exponent H surrounds an impenetrable sphere inside 
of which there is a vacuum at time t < t,, . The distribution of gas dynamic values at t,, 
has Rnite gradients. At to the sphere disappears, and a strong rarefaction wave arises, 
bounded by a free surface with zero pressure and by a characteristic whose dynamic 
functions coincide with those in the undisturbed region. The free boundary attains a 
velocity which remains constant until any characteristic or the shock wave reaches it. 

When the isentropic exponent S < g, the result is that the velocity of the free 
boundary is constant until the moment of focussing, i.e., until the instant when the 
free boundary arrives at the center and a reflected shock wave goes out from the center. 
When .@ > # the free- boundary begins to accelerate at a certain moment t, . When 
X’ > 3, tl coincides with to. 

INTRODUCTION 

The work is divided into 3 parts: 

(1) Discussion of the asymptotic behavior of the rarefaction wave at the begin- 
ning of the process. 

(2) Investigation of the asymptotic behavior in the neighborhood of the free 
boundary. 

(3) Discussion of the asymptotic behavior at the moment of focussing when 
S < 513, and at the beginning of the acceleration when 2 > 513. 

As the entropy in the rarefaction wave is constant, one can consider the gas 
isentropic until the shock wave appears. After similarity and shift transformations 
the process can be considered to start at to = -1, with an initial velocity of the 
free boundary of u,, = - 1, and the equation of state of 

P = v-y (1) 

where v means the specific volume. The equations of gas dynamics are in 
Lagrangian form, 

Lb- ars au ap - = u, at v=Tzy at= -3raam. 
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1. The centered rarefaction wave is plane in its leading term close to to . 
Therefore it is selfsimilar and the asymptotic behavior is determined by the series 
expansion in powers of t + 1, when t + 1 is sufficiently small. The coefficients of 
this expansion are functions of the selfsimilar variable 5 = m/t + 1, reckoned 
from the free boundary, where m is mass. Thus 

f = M3 +mo + 1) +mo + v + **a - (3) 

In particular, when Z # 513, JP # 3 

r’ = 1 + (A,,%ln - l)( 1 + t) + (A&‘A + A&lr + Cp/“)(l + t)* + .a*, 

u = -1 + &Ph + (Bd?“’ + BsaP’” + &Csl’“)(l + t) + *em, (4) 
4% = clp + (C&‘” + C*#” + ~CP)(l + t) + -**, 

where h = (.@’ + 1)/(X - l), and Atj , Bij, C,, are coefficients which depend on 
Z. The value of C is determined by the gradients in the undisturbed gas. When 
h = 4, (&’ = 5/3), and h = 2, (H = 3) these formulae degenerate; two neigh- 
boring terms have the same exponent and the coefficient of one of them becomes 
infinite. For these exceptional exponents the asymptotic behavior is changed and 
logarithmic terms appear. It is important to note that the tirst n terms of the asymp- 
totic behavior have been obtained with the assumption that 

0 + wmlfn-l(O + 0 (5) 
when(t+ l)+O. 

Since in the centered rarefaction wave the variable d varies from 0 (corresponding 
to the free boundary) up to a finite value (determined by the initial data), the con- 
dition represented by Eq. (5) is fulGlled uniformly in the whole region of the inter- 
section of the neighborhood of the point (m = 0, t = -1) with the rarefaction 
wave, provided 1 < 2 ( 3. When &@ > 3, i.e., h < 2 and 5 + 0, 

h(Rlfi(R - t?L-e”2h + co, 

the condition (5) is not fulfilled at 5‘ = 0, and the determination of the asymptotic 
behavior in the neighborhood of the point (m = 0, t = -1) requires additional 
investigation. 

2. Asymptotic behavior in the neighborhood of the free boundary, 
1<*<3. 

Taking into account the asymptotic equations (4), which are valid in the whole 
rarefaction wave when t + 1 --t 0, we shall look for an asymptotic expansion in the 
neighborhood of the free boundary, i.e., when t is small and t is finite, of the form: 

r = --t + MO Ph + VW) P + --*, 
u = -1 + &(f)Ph +#aO)P + ***, (6) 

4% = +3(t) Ph + &i(f) P + ***, 
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where /3 = 2/h when 1 < ti < 513 and /? = l/2 when % > 513. Substituting 
Eq. (6) into Eq. (2), we shall obtain a system of equations for 4 and #. In each case 
there are two differential equations and an algebraic relation between these func- 
tions. The initial condition can be obtained from the requirement that the asympto- 
tic solutions of Eq. (6) and (4) must match when 1 + t -+ 0 and e -+ 0. The 
equations and initial asymptotic expansion which determine the functions &(t) 
are: 

W + 0 41’ - $1 = 41 + t> +2 > h(1 + t) &’ - +2 = -3(h + 1) t2&‘*+1’ 

h(l + t) 93 = 3t2#1 , t - - 1 : +I - (1 + t), d2 - const, $9 - const. (‘) 

This system is not linear. After change of variables we arrive at the following con- 
clusion. The function h (and hence &) is bounded and different from zero when 
-1 <t<Oifl <X<5/3.1fZ’>5/3,thenthereisapointt1,-1 <t,<O 
such that &(tr) = 0. The function (be(t) is bounded within the same time intervals. 
But it need not be bounded when ti > 312. 

t --f 0; &’ < 3/2 : +2(t) - const, .% = 3/2 : I$&) N ln(-t), 

3/2 < .x? < 5/3 : Q2(t) - (-t)3-2K (8) 
t-t1; 5/3 < 2 < 3 : #g(t) - (tl - t)+. 

The functions &(t) are determined by a linear system of equations which depend 
on +Xt). Analysis of this equation leads to the result that the functions #&) are 
boundedwhen-l<t<O,H<55/3andwhen-l<t<t,,%’>5/3.They 
have the asymptotic behavior 

i < X < 513, t -+ 0; Jlllo - t3-2" 
ys2(t) - t-s, 

5/3 < Jr < 3, t - t1 ; ysl(t) - (tl -'t)--112, 

Ib30) - t 

$20) - (4 - o-3’2, 
(9) 

l/b, (t) - (t, - t)-"2. 

The tist terms of Eq. (6) represent the asymptotic expansion of the corresponding 
functions only in the domain where the ratios of z,4&JA/t, +2f1lh, #3~5-L~hl+3 are 
small enough. Such domains coincide with the domain where values of the quan- 
tities ('lA/t are small (- 1 < t < 0) when Z < 5/3, and where 

sf""(t, - t)4-8h, (- 1 < t < tJ 

are small when #’ > 513. Further analysis shows that in these domains one can 
consider Eq. (6) as the asymptotic representations of the corresponding functions. 
Since in the domains just referred to 



SPHERICAL RAREFACTlON WAVES 543 

when 

the velocity of the free boundary during the corresponding time intervals 
- 1 < t < 0 (&’ < 5/3) and -1 < t < t,(.W > 73) is constant: u = - 1. This 
result may be illustrated by the fact that no characteristic during these intervals 
reaches the free boundary. 

It will be useful now to summarize the asymptotic expansion obtained in the 
neighborhood of the free boundary when t + 0, X’ < 5/3 and when t - tr , 

a? > 513. 

(a) # < 5/3, t--f 0; 

r = -1 + clm1/2 + **. , v M 3c,t2mh-‘1” 

I 

mllh when .% < 3/2 
um -1 + mllh ln(-t) when &’ = 312 

mlP(-t)3-2* when ti > 312 

(b) %’ > 5/3, t - t,; 

r m -tI + Ah(t, - t)(“+lh mllh + LC(t, - t)-1/2 m1i2 
u w  -1 + A@ - l)(tr - t)-lfh mljh + 1/2X(& - t)-3/2 ml/* (10) 
v = 3At12(tI - 1) mllh-l + 3/2t12LC(t, - t)-‘12 rn-l12, L > 0. 

C is a constant, depending on the gradients at t = - 1. 

In the rt plane the asymptotic expansions are valid only in the domain limited by 
the curve tangent to the free boundary at the center (m = 0, t = 0), when &’ < 5/3, 
or at the point (m = 0, t = tJ, when &’ > 5/3, but they intiuence the asymptotic 
behavior in the whole neighborhood of these points, and determine the choice of a 
typical selfsimilar variable for a given neighborhood. 

3.1. Asymptotic behavior in the neighborhood of the center when t is su@iciently close 
to the moment offocussing and &’ < 5j3. 

It is obvious that the principal terms of the asymptotic expansion which is to be 
found must coincide with that obtained earlier near the free boundary (m = 0): 

r M -t, u w  -1, v * 3c,t2m-2~“+1/h when t + 0 
and 

5 = mlihJt, t < 0, 

is small enough. So it is natural to search for asymptotic representations in the 
whole neighborhood of the following form: 

r = mlJ”R({), u = 43, v = ml/h-lPV(<), 5 = mllh/t. (11) 
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Since the gas is isentropic 

p = mWW’/h[~~]-~~ (12) 

In this representation, m + 0, [ is arbitrary and the functions themselves are: 

R = -lJC + Cl, v w  3cJHP, U%-- 1. (13) 

It is obvious that this solution is valid only in a part of the neighborhood, because 
t becomes negative when 5 + 0 (t > 0). 

The reflected shock wave in our approximation corresponds to a line { = const. 
Because of the conditions at the shock front, the functions r, U, D preserve their 
representation (11) behind the front and Euler’s equation yields the following 
representation for P: 

p = m(h-3)Ph g(r). (14) 

Behind the front the flow is not isentropic so we are not able to evaluate P from 
Eq. (12). The unknown functions are determined by a system of ordinary differen- 
tial equations; the boundary conditions are determined by the conditions at the 
shock wave and by the fact that the velocity at the center is zero. The solution in 
the neighborhood of the center gives the distribution of gas dynamic quantities at 
the moment of focussing (t = 0) when m -+ 0: 

r N mllh , u--l, u N m+Wh, p - m&-Wflb , 

and the values of the gas dynamic functions at the center when t > 0: 

(15) 

i.e., the pressure is finite, the entropy and the specific volume are inBnit.e. 

3.2. Asymptotic representation in the neighborhood of the point (m = 0, t = tJ, 
i.e., at the beginning of acceleration of the free bounkry (513 < &’ < 3). 

The asymptotic expansion written above for these values of &’ in the neigh- 
borhood of the free boundary at -1 < t -C tl are valid ifmh-e(tl - tYdb, (t < td 
is small enough or (which is equivalent) the modulus of z = mh-a124h/(tl - t) is 
very large. For this reason the variable z is characteristic of the neighborhood of 
the point (m = 0, t = t,). We shall look for asymptotic representation in this 
neighborhood of the following form: 

r M -t + A I(t - tdhjhvs z*4hlhch-8) 1 fi(z) 

u w -1 - (h - 1)/h A I(t - t#lA-* z’~--~~‘/~‘~-=’ Ifs(z) 

v M 3t12A/h ((t - t3 2(1-AI/cl-2, z(1-A)(2-2A)/A(A-2) If&), 

(17) 
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where z varies from -cc to cc and the values z = fco correspond to the free 
boundary (the minus sign applies when t < i, , and the plus sign when f > tJ. 

The Eqs. (17) determiningf, , f2 , f3 can be reduced to one differential equation, a 
quadrature, and an algebraic relation. The unique solution of this system of 
equations is determined by the asymptotic behavior when z -+ - 00 and by the 
requirement that the pressure P + 0 when z + co. The sign of the constant C, 
which depends on the gradients in the undisturbed gas, is now very important. If 
C > 0, the required solution exists only if the integral curve has a discontinuity in 
the tist derivative at the singular point of the system, corresponding to a charac- 
teristic. This means that the gas dynamic functions have weak discontinuities along 
the characteristic which originates at the point (q = 0, t = tl). From t = t1 
onwards, the characteristics catch up with the free boundary and reflect from it. 
The asymptotic representations of the gas dynamic functions in the neighborhood 
of the free boundary when t > t, , are: 

r w  --t + R,(f - t,)hlh-2, u M - 1 + U& - t1)2+2, 

y M vdn-l/H’(t - Q’h-4’/1PV4. 
(18) 

It follows from these formulae that from t = t1 onwards the free boundary accele- 
rates and one can expect that near the moment of focussing the flow will correspond 
to the selfsimilar regime of the collapsing cavity in the neighborhood of the center 
PI. 

It follows from the analysis of the system for fi(z), that if C < 0 the solution 
becomes nonunique. The characteristics of the same family in the plane mt inter- 
sect each other when t < t, . There exists an envelope of this family of characteris- 
tics, which coincides with the line z = const, and therefore a shock wave appears. 
The shock goes through the rarefaction wave and reaches the free boundary. The 
corresponding regime has been studied in [2] and [3]. It is obvious that further 
study of the asymptotic behavior in the neighborhood of the free boundary when 
t > t1 is impossible, if we use the analytical means applied here, because this 
asymptotic behavior is determined by those characteristics which originate at a 
finite interval in the region t = -1. 

3.3. Asymptotic representations of gas dynamic functions in the neighborhood of 
the free boundary at the beginning of the process when .z? > 3. 

It has been shown previously that, for the values of .&’ stated, the asymptotic 
expansions in the neighborhood of the point (m = 0, t = - 1) are valid only when 
th-212h(l + t) is small enough, i.e., when h = m(1 + t)(h+2)l’h-2) is large (h < 2 
here). Therefore, it is natural to seek asymptotic solutions in the remaining part of 
the neighborhood of the point (m = 0, t = - 1) in the form of functions depend- 
ing on A. When h ---+ co these asymptotic representations must coincide with 



546 KAZHDAN 

those obtained earlier in Eq. (4). Therefore the gas dynamic functions in this part 
of the neighborhood have the form: 

r = --I + Ad1 + t) Phfi(h), I.4 m -1 + Blg’f”f2((x), 

50 M w’hfs(4. 
(19) 

The variable h extends from 0 to 00. The value A = 0 corresponds to the free 
boundary. Here, as in the case 513 < &’ < 3, the sign of the constant c, which is 
determined by the gradients of the initial distribution in the gas, is very important. 
If C > 0 then the distribution of gas dynamic functions near the free boundary 
(when 1 + t is small) has the form: 

r m -t + Km81h+2(1 + t), u M -1 + fi”lh+2 3 

v w 214 + 2 Kn~-~l~+~(l + t). 
cw 

If C < 0 the gas dynamic functions have a weak discontinuity along the charac- 
teristic which coincides with the line h = const, because of the requirement that 
the pressure vanishes at the free boundary. Asymptotic expansions in the neigh- 
borhood of the free boundary have the form: 

r Pa -t + 531(1 + t)‘h-Q/+2’, 24 m - 1 + g2(l + ty-“, 

u M &~+/*(l + t)h/(h-s)*. 
(21) 

In this case the free boundary starts accelerating just at the beginning of the 
process. 

It is important to note that the characteristics catch up with the free boundary 
from t = - 1 onwards independent of the sign of C. Therefore, further investigation 
of the asymptotic behavior in the neighborhood of the free boundary, when 
t + 1 is finite, seems to be impossible by the methods applied here. The asymptotic 
solutions obtained here by analytical means were confirmed by the numerical 
solution of the corresponding problems by Godunov. The difference scheme was 
specially accomodated to allow for the calculation of rarefaction waves. 
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